48 research outputs found

    Boundary stabilization and control of wave equations by means of a general multiplier method

    Full text link
    We describe a general multiplier method to obtain boundary stabilization of the wave equation by means of a (linear or quasi-linear) Neumann feedback. This also enables us to get Dirichlet boundary control of the wave equation. This method leads to new geometrical cases concerning the "active" part of the boundary where the feedback (or control) is applied. Due to mixed boundary conditions, the Neumann feedback case generate singularities. Under a simple geometrical condition concerning the orientation of the boundary, we obtain a stabilization result in linear or quasi-linear cases

    Energy decay for solutions of the wave equation with general memory boundary conditions

    Full text link
    We consider the wave equation in a smooth domain subject to Dirichlet boundary conditions on one part of the boundary and dissipative boundary conditions of memory-delay type on the remainder part of the boundary, where a general borelian measure is involved. Under quite weak assumptions on this measure, using the multiplier method and a standard integral inequality we show the exponential stability of the system. Some examples of measures satisfying our hypotheses are given, recovering and extending some of the results from the literature.Comment: 14 pages, submitted to Diff. Int. Eq

    Carleman estimates for the Zaremba Boundary Condition and Stabilization of Waves

    Full text link
    In this paper, we shall prove a Carleman estimate for the so-called Zaremba problem. Using some techniques of interpolation and spectral estimates, we deduce a result of stabilization for the wave equation by means of a linear Neumann feedback on the boundary. This extends previous results from the literature: indeed, our logarithmic decay result is obtained while the part where the feedback is applied contacts the boundary zone driven by an homogeneous Dirichlet condition. We also derive a controllability result for the heat equation with the Zaremba boundary condition.Comment: 37 pages, 3 figures. Final version to be published in Amer. J. Mat

    On the cost of null-control of an artificial advection-diffusion problem

    Full text link
    In this paper we study the null-controllability of an artificial advection-diffusion system in dimension nn. Using a spectral method, we prove that the control cost goes to zero exponentially when the viscosity vanishes and the control time is large enough. On the other hand, we prove that the control cost tends to infinity exponentially when the viscosity vanishes and the control time is small enough.Comment: 16 page

    On the local exact controllability of micropolar fluids with few controls

    Get PDF
    In this paper, we study the local exact controllability to special trajectories of the micropolar fluid systems in dimension d = 2 and d = 3. We show that controllability is possible acting only on one velocity.Comment: 25 pages, accepted for publication in ESAIM:COC

    Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers.

    No full text
    17 pages, 9 figuresWe study the boundary stabilization of the wave equation by means of a linear or non-linear Neumann feedback. The rotated multiplier method leads to new geometrical cases concerning the active part of the boundary where the feedback is applied. Due to mixed boundary conditions, these cases generate singularities. Under a simple geometrical condition concerning the orientation of the boundary, we obtain stabilization results in both cases

    Controllability and observabiliy of an artificial advection-diffusion problem

    Full text link
    In this paper we study the controllability of an artificial advection-diffusion system through the boundary. Suitable Carleman estimates give us the observability on the adjoint system in the one dimensional case. We also study some basic properties of our problem such as backward uniqueness and we get an intuitive result on the control cost for vanishing viscosity.Comment: 20 pages, accepted for publication in MCSS. DOI: 10.1007/s00498-012-0076-

    Result Certification of Static Program Analysers with Automated Theorem Provers

    Get PDF
    International audienceThe automation of the deductive approach to program veri- fication crucially depends on the ability to efficiently infer and discharge program invariants. In an ideal world, user-provided invariants would be strengthened by incorporating the result of static analysers as untrusted annotations and discharged by automated theorem provers. However, the results of object-oriented analyses are heavily quantified and cannot be discharged, within reasonable time limits, by state-of-the-art auto- mated theorem provers. In the present work, we investigate an original approach for verifying automatically and efficiently the result of certain classes of object-oriented static analyses using off-the-shelf automated theorem provers. We propose to generate verification conditions that are generic enough to capture, not a single, but a family of analyses which encompasses Java bytecode verification and Fähndrich and Leino type- system for checking null pointers. For those analyses, we show how to generate tractable verification conditions that are still quantified but fall in a decidable logic fragment that is reducible to the Effectively Propositional logic. Our experiments confirm that such verification conditions are efficiently discharged by off-the-shelf automated theorem provers

    A Nelson-Oppen based Proof System using Theory Specific Proof Systems

    Get PDF
    International audienceSMT solvers are nowadays pervasive in verification tools. When the verification is about a critical system, the result of the SMT solver is also critical and cannot be trusted. The SMT-LIB 2.0 is a standard interface for SMT solvers but does not specify the output of the get-proof command. We present a proof system that is geared towards SMT solvers and follows their conceptually modular architecture. Our proof system makes a clear distinction between propositional and theory reasoning. Moreover, individual theories provide specific proof systems that are combined using the Nelson-Oppen proof scheme. We propose specific proof systems for linear real arithmetic (LRA) and uninterpreted functions (EUF) and discuss proof generation and proof checking. We have evaluated the cost of generating proofs in our proof system. Our experiments on benchmarks taken from the SMT-LIB library show that the simple mechanisms used in our approach suffice for a large majority of the selected benchmarks
    corecore